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We consider the stability to small perturbations of a free shear layer formed by mix- 
ing two parallel streams of a viscous compressible gas. The temperatures TI and T 2 of the 
two streams may be different. For example, large temperature differences are typical for 
the boundary layer of a jet flowing out of the nozzle of an airplane or rocket motor. The 
stability of flows of this kind is of interest in connection with turbulization and noise- 
generation processes at high velocities [1-3]. 

The present paper is a continuation of [4], where the stability of a compressible shear 
layer was studied for < = 1 (K ~ T2/TI). As in [4], the stability problem is solved using 
the linearized Navier-Stokes equations for a compressible gas and the orthogonalization meth- 
od [5]. Solutions are calculated over a wide range of the parameters: Reynolds number (0 < 
Re ~ 103), Mach number (0 ~ M ~ 2) and the temperature difference (0.2 ~ ~ ~ 5). It is found 
that for different values of M and ~ three discrete perturbation modes can be unstable. One 
of these modes propagates with a subsonic phase velocity, while the other two are "superson- 
ic." The neutral stability curves and the growth constants are determined, it is shown 
that perturbations of the continuous spectrum are damped for finite values of Re and all 
values of K. In the limit Re + ~ the continuous modes become undamped acoustic disturban- 
ces. 

I. The stability of a plane-parallel flow of a viscous compressible gas to small two- 
dimensional traveling-wave perturbations of the form 

{p(g), u(g), v(g), p(y), O(g)} exp [~a(x - -  ct)], c : cr -F ic~ 

i s  d e t e r m i n e d  by  t h e  w e l l - k n o w n  s y s t e m  o f  l i n e a r  e q u a t i o n s  [ 6 ,  7 ] :  

Dp ~ (~/T - -  T ' v / T  2 = O, 

D u  d- U'v  ~- i(zTp : T[~to(U"--  cz2u) ~- ia~o(l/3 ~- 

+ T'(u' + icz~) + (U'0)']/Re, 
Dv 4:- Tp '  : T[~to(V" - -  a2v) + p.o~'/3 + 2T ' (2v '  - -  io:u)/3 J- ~ U ' O ]  Re, 

DO + T 'v  + (V - -  l )T( l  = VT[~to(0" - -  cz~0) + T " 0  + 

+ 2 T ' 0 ' ] / R e P r  ~- ~(? - -  t )M2T[2boU'(u  ' + i a v ) +  U'"O]/Re. 

p : - ( O / T  : ,  Tp)/?M%,~o : T , D  = i c z (U- -  c), (~ : iczu + v', 

M : U / ( ? B T J l / ' ,  Re : plU~6/~h. 

(i.1) 

(1.2) 

Here x and y are the longitudinal and transverse coordinates; U(y) and T(y) are the velocity 
and temperature profiles of the unperturbed flow; p, u, v, p, e are the amplitudes of the 
perturbations of the density, velocity along x and y, pressure, and temperature; a is the 
real wave number of the perturbation; c r is the phase velocity; ~c i is the growth constant; 
Pr = 0.72 is the Prandtl number; ~ = 1.4 is the adiabatic index; R is the gas constant. The 
x and y coordinates vary over (-~, ~) and they are made dimensionless with the help of the 
thickness of the shear layer 6. The other quantities are measured in terms of the unper- 
turbed values in uniform flow at y + +~ (denoted by the 1 subscript). A prime denotes dif- 
ferentiation with respect to y. It is assumed in (1.2) that the viscosity D depends linear- 
ly on the temperature and that the pressure of the unperturbed flow is constant, in accor- 
dance with boundary-layer theory [8]. 

The boundary conditions for the perturbations express the requirement that their ampli- 
tudes must be finite at infinity: 
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IP[, lu], [v], [Pl, IO[ < oo when y--) - - - t -~ ,  
( 1 . 3 )  

i.e., we include in the treatment perturbations whose amplitudes are finite at large dis- 
tances from the shear layer. The linear equations (1.2) and the boundary conditions (1.3) 
form an eigenvalue problem for the unknown quantity c = c r + ic i. The flow will be unstable 
if c i > 0, stable if c i < 0, and neutrally stable when c i = 0. 

We assume that mixing of the parallel streams begins at the point x = 0, y = 0. In the 
region x > 0 the velocity and temperature profiles are self-similar solutions of the compres- 
sible boundary-layer equations with the boundary conditions 

U - + I ,  

where m = U=/Uz, K = T2/T I are 
ing the thickness of the shear 

T - + I  wheny__).~,  U - + m ,  T - + x w h e n y - ~ + - - ~ ,  ( 1 . 4 )  

the velocity and temperature ratios of the streams.r Defin- 
layer as ~ = (~DIL/pIUI) I/=, the solution has the form [4, 8] 

~ (m- I) [~-~f f~ -)] u = l + T  ~V~q , 
co 

T = I + T i  (• _ t) 1 - -  erf V~-P-rq -F 4-]/-22---Pr m (z) dz, 

i n  Pr z 2) e r r  - -  Pr)z). 
0 

( i .5) 

Here q is the Dorodnitsyn-Stewartson variable and L is the distance between the origin and 
a certain fixed cross section. Because Re = ~L/6, by varying Re in (1.2) we can study the 
stability of the flow in different cross sections downstream from the point where mixing 
begins (the quasiparallel approximation). 

Calculations using (1.5) show that for 0 E M ~ 2, 0.2 ~ < ~ 5 the velocity profile U(y) 
in the shear layer varies only slightly with M and ~. But the temperature profile is sensi- 
tive to the temperature difference between the streams and viscous dissipation, which is 
proportional to M2(aU/Sy) 2. The latter effect causes the form of the profile to change sig- 
nificantly at large M: The temperature in the center of the shear layer becomes higher than 
at the edges. 

Before solving the stability problem (1.2)-(1.5), we discuss some useful transforma- 
tions to reduce the computational labor. We see from (1.2)-(1.5) that the eigenvalue de- 
pends on m, K, M, Re, =: c = c(m, <, M, Re, ~). Analysis of the stability simplifies, how- 
ever, if we note that the values of c for different values of m are very simply related to 
one another. We consider, for example, how the eigenvalues and eigenfunctions transform 
when we go from arbitrary m to m = 0 (the latter corresponds to the usual experimental situ- 
ation: a boundary layer of a jet ejected into air at rest). We denote the eigenvalue and 
eigenfunction for m = 0 with a zero superscript. From (1.2)-(1.5) 

c o c (0 , •  M, Ro,~) = i - ~ - ~ ' T ~ - ~ '  ( 1 . 6 )  
i - - m  ' 

{po, uo, vo, po, oo} = {0, (t - m)u, (1 - m)v, (t - m ?  p, o}. 

Physically (I.6) corresponds to transformation to a moving (with velocity m) reference frame 
and to scaling the velocity by the factor (i - m). 

Another relation connects the stability characteristics for temperature differences 
and K = I/K: 

= c ( m , ~ ,  M, Re, r = (i § m)-- c*(m, • MV-x, • r215 

{~(y), ~(y), ~(y), .~(y), o'(y)} = {~*(b), -u*(~), -~*(~), 
.p*(~), o*~)/~}, ~ = - . y ,  

(1.7) 

#01< K < =. We assume -i ~ m ~ i. This can always be arranged by choosing x in the direc- 
tion of the stream with the higher velocity and the y axis from the shear layer toward the 
same stream. 
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where the star denotes the complex conjugate. Indeed, substituting (1.7) intQ (1.2) and 
taking the complex conjugate, we obtain the original system (1.2). 

2. The stability calculations for the discrete eigenvalues are presented in Figs. 1-3 
for a given temperature difference K. The numerical method used to solve (1.2) and (1.3) is 
the same as in [4] and will not be described here. In all calculations m = -i; results for 
other values of m (in particular m = 0) can be obtained with the help of the transformation 
(1.6). We note that K < 1 corresponds to a hot jet, i.e., the stream with the higher veloc- 
ity is hotter, and ~ > 1 corresponds to a jet colder than the surrounding air. 

Neutral stability curves are drawn in the ~, M and ~, c r planes in Figs. la and Ib for 
Re = 103 , i.e., practically the inviscid limit. Curves 1-4 correspond to ~ = i, 0.5, 0.2, 
2. The unstable regions in the ~, M plane lie between the neutral curves and the ~ = 0 axis. 
The letters a, b, c denote neutral waves of different types (see Appendix). For example, 
the neutral curve 1 (K = i) consists of the segments la, ib, and ic. The segment la corre- 
sponds to neutral subsonic waves with c r = 0. The segments Ib and ic are neutral curves of 
the two supersonic modes. They coincide in the ~, M plane (the curve !bc) and the veloci- 
ties of the modes are equal in magnitude (to c r) and opposite in sign. This is a consequence 
of the symmetry properties of U(y) and T(y) at < = 1 [4]. When ~ = 1 all segments of the 
neutral curve join at the point ~ = 0, M = i, c r = 0. In this case the perturbation travels 
at the speed of sound with respect to both of the streams, i.e., MsIK= I = 1 (see Appendix). 
Near the joining point the neutral curve 1 forms a loop in the ~, M plane and both subsonic 
and supersonic neutral oscillations exist in a narrow region of Mach number (M, < M < i). 
Here M, is the minimum Mach number for neutral supersonic perturbations (M,I~= ~ = 0.906). 

When K ~ 1 the neutral curve of the subsonic mode joins with one of the two neutral 
curves of the supersonic perturbations, forming a single continuous curve (2ab for < = 0.5, 
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TABLE i 
~z 

i- 

O : 

~ O .  

b 
C 

0,2 I 0,5 l 2 5 

b 

0,58 I 0,71 0,91 1,i5 t,6i 
0,72 [ 0,82 0,91 i,Oi t,29 

(Xma x 

2,9i i,39 0,92 0,70 
2,34 0,73 0,3i 0,i4 
0,26 0,28 0 ,31  0,37 

0,58 
0,05 
0,47 

3ab for K = 0.2, 4ac for ~ = 2). The joining point no longer lies on the = = 0 axis. The 
neighborhood of this point is shown in magnified scale in the e, M plane for K = 0.5 in the 
insert of Fig. la. We see that as before the neutral curve forms a loop, although it is 
much smaller in size. For still smaller K the loop disappears and the regions where subson- 
ic and supersonic neutral perturbations exist no longer overlap (see the curves for < = 0.2). 
It follows from Fig. ib that the phase velocity of the neutral waves is nearly constant as 
long as the perturbation is subsonic (the nearly vertical lines in the figure) and ICrl of 
the supersonic perturbations of type b (< = 0.5; 0.2) or c (K = 2) increase rapidly beyond 
the point where the segments join. 

The second supersonic mode forms a separate neutral curve (2c, 3c, 4b) when K ~ 1 with 
a narrower unstable region in the ~, M plane. The propagation velocity of neutral perturba- 
tions of this mode can change sign and the corresponding curves in Fig. ib intersect the 
c r = 0 axis. We note that this mode was omitted in [9], which also considered the stability 
of a viscous compressible shear layer. In [9] only the growth constant was calculated; the 
neutral curves were not constructed and therefore an overall picture of the stability was 

not obtained. 

The effect of viscosity on the stability of the shear layer is shown in Fig. ~ 2, where 
the neutral curves are given in the ~, Re plane for ~ = 0.5 and different values of M (curves 
1-3 correspond to M = 0.5, 1.2, 0.8). It is evident from Fig. 2 that the neutral curve of 
the subsonic perturbations passes through the origin and hence the critical Reynolds number 
is Re c = 0. But Re c is nonzero for the supersonic waves. Therefore, if M > M s we always 
have Re c ~ 0. When M, < M < M s the neutral perturbation which was supersonic in the limit 
Re + = can become subsonic for finite Re if ICrl also decreases with decreasing Re. This 
situation is illustrated by curve 3ab (K = 0.5, M = 0.8) with Re c = 0, since the perturba- 
tion is subsonic for small Re. The calculation shows that the loop in the curve 3ab is near 
the point where the velocity of the neutral wave with respect to the gas stream is equal to 
the speed of sound. A loop in this case is not surprising, since the neutral curves in the 
~, M and ~, Replanes are projections onto these planes of the neutral surfaces ci(~, M, 
Re) = 0, which are obviously self-intersecting when K = 0.5. Neutral curves in the ~, Re 
plane are not shown for other values of m in the interest of brevity. As before, Re c = 0 
for subsonic perturbations and Re c ~ 0 for supersonic perturbations. Table 1 gives the de- 
pendence of K on M, and C~ma x, where C~nax is the maximum (for all M) wave number of the un- 
stable perturbations of the given mode for Re = 10 3. Obviously, M, decreases monotonically 
with decreasing < and so in a hot jet unstable supersonic waves occur for smaller M. Since 
Re c + ~ when M + M, (see Fig. 4 in [4]), it follows from the monotonic dependence M,(K) that 
for a given M there exists a K = ~, such that Re c + m when < + <,. If K = ~, then Re c is 
large and the viscosity has a significant effect on the stability of the shear layer. 

It follows from the dependence of ~max on K that the temperature difference affects 
the sizes of the unstable regions of the subsonic and supersonic perturbations differently. 
The unstable region of the subsonic mode expands with decreasing ~ and contracts with in- 
creasing K. The unstable region of the supersonic perturbations reaches a minimum size at 
< = 1 and in this case heating and cooling destabilize the flow. 

The effect of the temperature difference on the stability of the perturbations is shown 
in Fig. 3, where the growth constant ~c i is given as a function of ~ for Re = 10 3 . Curves 
1-4 corresponds to ~ = i, 0.5, 0.2, 2 and the different perturbation modes are labeled a, b, 
and c. The growth constant ~c i was calculated for the subsonic (supersonic) perturbations 
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for M = 0.5 (M = 1.2). It is evident that the growth constant for supersonic perturbations 
is much smaller (by about an order of magnitude) than for subsonic perturbations for all K. 
We note also that an expansion of the region of unstable ~ is accompanied by an increase in 
the maximum value of ~c i. 

3. It is well known [i0] that for flow in free space the stability problem has a con- 
tinuous spectrum, in addition to discrete eigenvalues. The characteristic feature of the 
perturbations of the continuous spectrum is the fact that their eigenfunctions do not vanish 
at infinity [I0]. Therefore, to find the continuous spectrum we consider (1.2) in the lim- 
its y + • where the velocity U and temperature T are constants. The general solution of 
(1.2) in the limit y + +~ can be written as a superposition of six fundamental solutions 
propotional to e• (n = i, 2, 3), where the ~n 2 are [4]: 

k~2, 3 --  

[~ = o: 2 + A~, n = l ,  2, 3, A I = R e  D / T  ~', 

RePrD [ J ~ -  ~/ ~ I [ 4 ? \ i 2 f  ' 4 / /  4q _ _ _  

(3.1) 

M2DT 
q =  Re ' D = i a ( U - - c ) .  

Here U = i and T = I. The general solution in the limit y + -~ is constructed in the same 
way, only U = m, T = K in (3.1). The fundamental solutions corresponds to the different 
types of elementary disturbances in a compressible gas; at large Re they can be identified 
with vorticity, entropy, and pressure waves [4, ii]. 

According to the boundary conditions (1.3), the perturbation amplitude in a free stream 
decreases exponentially, except when one of the ~n 2 is real and negative: 

~ (c) = [(~)T + ~ (~)d ~ = - k~ (3.2) 

(k is a real number, k z 0). The asymptotic eigenfunction of the damped perturbation is a 
linear combination of the three fundamental solutions for which (~n)rY < 0. 

It can be shown that the solution of the problem (1.2), (1.3) can be found for any c 
satisfying (3.2) either in the limit y + +~ or in the limit y +~-~, i.e., a continuous spec- 
trum exists in the problem. Indeed, in this case both solutions of the form e• satisfy 
(1.3). The asymptotic eigenfunction in one of the free streams will then be a superposition 
of four linearly independent solutions. 

Writing (1o2) as a system of six first-order equations and integrating y = +co and y = 
-~ to y = 0 (see the detailed description of the procedure for the numerical solution in 
[4]), we obtain the following matching condition at y = 0: 

C1z1 + C222 @ Csz3-l-C4z4 = C5Z5 @ C6Z6 @ C7z7 (3.3) 

(zz, .... z7 are the fundamental solution vectors at the point y = 0 and Cz, ..., C 7 are un- 
known constants to be determined). One of the constants can always be chosen arbitrarily 
and corresponds to normalizing the solution. "Then (3.3) becomes a system of six linear in- 
homogeneous equations uniquely determining the remaining six constants and the eigenfunc- 
tion,-m < y < ~ and undamped in one of the streams. 
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We obtain from (3.2) for n = i, 2, 3 and Re >> 1 

c = U -- it2 (=~ + kD. 
aRe  

(+ w) c U +_ ] / r  (~ + k~) I ~# 
c~M 2 + 

(=~ + k ~) 
r Re 

+ o(Re-0 

(3.4) 

( 3 . 5 )  

( 3 . 6 )  

The eigenvalues of the continuous spectrum for different k form lines in the complex 
plane c r + ic i (see Fig. 4). Lines 1 and 2 correspond to the vortex and entropy branches 
of continuous spectrum (3.4) and (3.5). Each of these lines is composed of two members cor- 
responding to waves with phase velocity c r = 1 (undamped in the upper stream when y + m, U = 
I, T = i) and to waves with c r = m (undamped in the lower stream with y § U = m, T = K). 
It follows that these perturbations are carried along by the streams and their phase veloci- 
ties relative to the gas are zero. The four segments of the acoustic branch of the continu- 
ous spectrum (3.6) (labeled 3) are pressure waves pros with a velocity relative to 
the gas greater than or equal to the speed of sound /T/M. This branch is absent in the lim- 
it of an incompressible fluid. Indeed, when M + 0 it follows from (3.6) that the velocity 
of acoustic perturbations c r § • which is consistent with an infinite speed of sound in 
an incompressible medium. We note that acoustic perturbations of the continuous spectrum 
can play an important role in problems of sound generation by supersonic shear flow [3] and 
in the opposite case of excitation of instability waves by an external acoustic perturbation 
[12]. 

At finite Re all perturbations of the continuous spectrum are stable and damp out in 
time. It is evident from (3.4)-(3.6) that the continuous spectrum becomes neutral (c i = 0) 
only in the limit Re + =. 

The supersonic discrete perturbations considered in Sec. 2 are closely related to acous- 
tic waves of the continuous spectrum. Although in the presence of viscosity the discrete 
eigenfunctions always damp out as we move away from the shear layer, the damping can be very 
slow for large Re (see Figs. 5 and 6 in [4]). Indeed, expanding (3.1) for ~3 = 83r + i83i 
in powers of Re -I we find that 183rI Re -I. When Re § ~ (1.2) reduces to a single second- 
order equation for the pressure amplitude [6, 7], whose solution is a pressure wave with a 
free-stream damping constant: 

~ =  lira ~ 3 = •  z;T" ( 3 . 7 )  
R e ~  

For  n e u t r a l  waves  o f  t y p e s  b and c t h e  damping c o n s t a n t  becomes p u r e l y  i m a g i n a r y :  ~ = i~ i .  
F a r  f r o m  t h e  s h e a r  l a y e r  t h e s e  waves  h a v e  t h e  fo rm 

e q~+plu-~c.#), ( 3 . 8 )  

i . e . ,  t h e y  do n o t  damp o u t  b u t  o s c i l l a t e  i n  x and  y w i t h  a c o n s t a n t  a m p l i t u d e .  T h e r e f o r e ,  
in the inviscid problem neutral supersonic perturbations of the discrete spectrum do not ex- 
ist (although discrete unstable perturbations with c i > 0 do exist [13]), and all such per- 
turbations belong to the continuous spectrum. To study neutral perturbations of types b and 
c in the inviscid theory [13, 14] a more or less arbitrary additional condition must be in- 
troduced in order to single out one of the points of the continuous spectrum. In [13] this 
additional condition was taken to be the requirement that neutral oscillations must form a 
boundary to unstable oscillations when c i § 0, while in [14] it was assumed that the eigen- 
functions far from the shear layer must have the form of outgoing waves. 

It follows from (3.8) that undamped acoustic perturbations are radiated into the exter- 
nal stream or else approach the shear layer from the outside at an angle P = arctan(Si/~) 
to the flow. The b and c waves must be radiated into the "upper" (y > 0) and "lower" sides 
of the shear layer, respectively. Obviously, these waves are analogous to Mach waves radi- 
ated from the boundary layer of a jet. Radiation of Mach waves into the surrounding space 
and inside the jet itself has been observed experimentally for sufficiently large M [15]. 

Appendix. Perturbation waves in a shear layer between two streams are naturally divid- 
ed into four types (a, b, c, d) depending on the propagation velocity [9]. They correspond 
to four parts of the M, c r plane (Fig. 5): 
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cr = l - - l / M ;  ( A . ! )  

cr = m + ~f~/M. ( A . 2 )  

These equations describe perturbations propagating with respect to the upper (lower) stream 
with a velocity equal to the speed of sound in the given stream. Region a includes pertur- 
bations which are subsonic with respect to both streams. It follows from Fig. 5 that for 
this region there exists a maximum Mach number M s corresponding to the intersection point 
of (A.I) and (A.2): M s = (i + ~)/(i - m). 

It is well known [6] that the velocity of neutral perturbations c N in region a is, for 
large Re, determined by the position of the generalized inflection point: 

d ( i  dU 
cN = u (yc)~ ~ k - w - a 7  ] y=~c = o 

P e r t u r b a t i o n s  i n  r e g i o n  b a r e  s u p e r s o n i c  w i t h  r e s p e c t  t o  t h e  u p p e r  (y  > 0) s t r e a m ,  p e r t u r b a -  
t i o n s  i n  r e g i o n  c a r e  s u p e r s o n i c  w i t h  r e s p e c t  t o  t h e  l o w e r  s t r e a m ,  and p e r t u r b a t i o n s  i n  r e -  
g i o n  d a r e  s u p e r s o n i c  w i t h  r e s p e c t  t o  b o t h  s t r e a m s .  We n o t e  t h a t  p e r t u r b a t i o n s  o f  t y p e  d 
were  n o t  f o u n d  h e r e  o r  i n  o t h e r  p a p e r s  known t o  u s .  

5 

6 

7 

8 

9 

i0 

ii 

12 

13 

14 

15 

I. 

2. 

3. 

4. 

LITERATURE CITED 

D. Papamoschou and A. Roshko, "Compressible turbulent shear layer: An experimental 
study," J. Fluid Mech., 197, 453 (1988). 
D. Cryton, Acoustics as a Branch of Hydrodynamics [Russian translation], Modern Hydro- 
dynamics, Mir, Moscow (1984). 
C. K. W. Tam and D. E. Burton, "Sound generated by instability waves of supersonic 
flows. Part I. Two-dimensional mixing layers," J. Fluid Mech., 138, 273 (1984). 
A. N. Kudryavtsev and A. S. Solov'ev, "Stability of a shear layer of compressible gas," 
Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1989). 
S. K. Godunov, "Numerical solution of boundary-value problems for systems of linear 
ordinary differential equations," Usp. Mat. Nauk, 16, No. 3 (1961). 
R. Betchov and V. Kriminale, Problems of Hydrodynamic Stability [Russian translation], 
Mir, Moscow (1971). 
S. A. Gaponov and A. A. Maslov, Growth of Perturbations in Compressible Flows [in Rus- 
sian], Nauka, Novosibirsk (1980). 
L. A. Bulls and V. P. Kashkarov, Theory of Jets in a Viscous Fluid [in Russian], Nauka, 
Moscow (1965). 
S. A. Ragab and J. L. Wu, "Instabilities in the free shear layer formed by two super- 
sonic streams," AIAA Paper N88-0038, New York (1988). 
C. E. Grosch and H. Salwen, "The continuous spectrum of the Orr-Sommerfeld equation. 
Part i. The spectrum and the eigenfunctions," J. Fluid Mech., 87, 33 (1978). 
B. T. Chu and L. S. G. Kovasznay, "Nonlinear interactions in a viscous heat-conducting 
compressible gas," J. Fluid Mech., 3, No. 5 (1958). 
L. M. Mack, "Linear stability theory and the problem of supersonic boundary layer tran- 
sition," AIAA J., 13, 278 (1975). 
W. Blumen, P. G. Drazin, and D. F. Billings, "Shear layer instability of an inviscid 
compressible fluid. Part 2," J. Fluid Mech., 71, No. 2 (1975). 
T. L. Jackson and C. E. Grosch, "Inviscid spatial stability of a compressible mixing 
layer," CR/NASA; 181671. Rep./ICASE, N 88-33, Washington (1988). 
H. Oertel, "Coherent structures producing Mach waves inside and outside of the super- 
sonic jet," in: Structure of Complex Turbulent Shear Flow, Symp. IUTAM, Marseille 
(1982); Springer, Berlin (1983). 

553 


